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Abstract—The problem of bending of axially constrained beams on nonlinear Winkler-type elastic
foundations is considered. The solution is obtained by an iteration method using Green’s functions.
Numerical results are presented for uniformly loaded beams hinged at both ends. Axial forces and deflections
are given in terms of three dimensionless parameters which depend on the load intensity, foundation
characteristics and properties of the beam.
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A Cross-sectional area.

EI Flexural rigidity.

Foundation parameters.

Length of the beam.

Axial force.

Radius of gyration.

Load per unit length.

Reaction intensity in foundation per unit length.
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1. INTRODUCTION

In the analysis of the bending of beams, it is usually assumed that free relative longitudinal motion
of the ends of the beam is permitted. In many beam applications such an assumption is not
realistic and solutions based on it may, in some cases, lead to grossly inaccurate results. When an
axially constrained beam (a beam whose supports are immoveable in the axial direction) is
subjected to lateral loads, it undergoes stretching. The axial constraint force developed is not
known a priori, since it depends on the deflection curve of the beam. The introduction of such
constraint forces in the analysis makes the problem nonlinear; as a resuit the differential equation
for axially constrained beams can best be solved numerically.

Several investigators [1-4] in the past have considered this nonlinear problem for the case of
ordinary beams. Recently, analyses have been presented[5, 6] for the case in which the beams are
resting on elastic foundations. The elastic foundation considered in [5] and [6] are of the
Winkler-type for which the foundation reaction is linearly proportional to the deflection. In
general, however, a foundation does not exhibit a linear pressure-displacement relation. Because
of the densification of the base, it may be expected that as the displacement continues to increase
the foundation reaction will tend to build up more and more rapidly. In the present paper, the
effect of such nonlinear behavior of an elastic foundation is considered in the analysis of axially
constrained beams. The beams considered are subjected to uniformly distributed loads and are
hinged at both ends.
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2. ANALYSIS
2.1 Differential equation
The beam configuration is as shown in Fig. 1. In the analysis it will be assumed that the axial
constraint force N is constant throughout the length of the beam.
The differential equation of bending of beams on elastic foundations is{7],
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which can be expressed in nondimensional form as,
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For a linear Winkler-type foundation, reaction intensity per unit length in the foundation is
given by,

p = ky. 3)
This equation can be written in nondimensional form as,
y = A*nac. “)

A more realistic pressure-displacement relation in conjunction with the Winkler model will
be[8],

p = () sinh (ny), )

which can be nondimensionalized as follows:

4

y= %- sinh (n'na). ®)

In equation (5), k and n are parameters to be determined from experimental data on the
foundation. It may be noted that in the limit when n tends to zero, the equation (5) reduces to
equation (3). The parameter k in such cases becomes same as the modulus of foundation in the
linear theory. Once k and n are determined experimentally, then from the properties of the beam,
A and n' can be calculated.

For the nonlinear foundation, equation (2) can be written as
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Since the supports are immoveable, the change in half length of the neutral surface due to
bending is approximately given by[1],

Ac = % Lc (g;y)z dx. ®

Fig. 1. Axially constrained beam on elastic foundation.
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Therefore, the axial force N is given by,

N—';—f ( )dx, 9

which can be written in nondimensional form as:

o[ (@

Solutions of equations (7) and (10), subjected to appropriate boundary conditions will be the
solution for uniformly loaded axially constrained beams on nonlinear elastic foundations. For
hinged end beams these boundary conditions are,

n=0 at £==1, 11
%§=0 at g==+1. (12)

When axial constraint effect is neglected, the differential equation can be obtained from
equation (7) by setting p =0,

d'p, A* . , _B
+ P sinh (n'nao) = " {13)

1en, yin=£, (14)

2.2 Nonlinear elastic foundation-axial constraint neglected

The nonlinear differential equation (13) describes the behavior of the beam resting on a
nonlinear elastic foundation when the axial constraint effect is neglected, The appropriate
boundary conditions on 7 are given by equations (11) and (12). The solution of equation (13) is
given by

3 1
an(®= [ Gi6 v 1w+ [ Gigwiw (15)

where

£ = sinh (' aon(9) - 48 16)

and G(£, ¢) is the Green’s function in the appropriate intervals[9, 10}. The Green’s function in
expression (15) is defined such that it satisfies the following differential equation

d'GE¢)

ae* — gt (- 4)=0, (17)

where § is the Dirac-delta function. The Green’s function satisfies the same boundary conditions
as 7 at £ == 1. It can be shown that such a Green’s function is given by
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o= (B8 ) o5t et e () o

and

It can easily be verified by substitution that equation (15) indeed satisfies equation (13) and all
the boundary conditions on . Equation (15) is a nonlinear integral equation and has been solved
by iteration as discussed in Section 3.

2.3 Nonlinear elastic foundation-axial constraint included

The nonlinear differential equation (7) describes the behavior of the beam resting on a
nonlinear elastic foundation when axial constraint effects are included. The value of p in equation
(7) is given by equation (10) and the boundary conditions on 7 for a simply supported beam are
given by equations (11) and (12). The solution of equation (7) is given by

£ 1
an(®= [ Kignjw v+ [ Kigwfwray 19

where K(¢&, ¢) is the Green's function in the appropriate intervals and f(y) is described by
equation (16). The Green's function K is defined such that it satisfies the following differential
equation:

Ky |, FKEY o
Ge e -9 =0 (20)

where as before 8 is the Dirac-delta function. The boundary conditions on K are similar to those
of n at £ ==1. It can be shown that such a Green's function is given by
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Fig. 2. Pressure-displacement relation of the foundation for various values of the foundation parameter ',
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It can easily be verified by substitution that equation (19) indeed satisfies equation (7) and all the
boundary conditions on 5. Equation (19) is a nonlinear integral equation and has been solved by
iteration as discussed in Section 3.

3. NUMERICAL EXAMPLES AND DISCUSSION

The results presented in Figs. 3-5 for beams on nonlinear foundations are obtained by an
iteration method. The interval of ¢ is first divided into m parts. In the present paper m is 60 and
parts are all equal. The loading parameter 8 is increased from 0 to a final value (30 in the present
case) by increments of A;8. These increments need not necessarily be equal. For the initial load
A, B, the starting values of na, at the end points of each of m intervals are taken from the known
solution of the linear foundation model (without constraint effect). The integrals in equation (15),
which represent the solution for beams on nonlinear foundations without axial constraint, are
then evaluated by the trapizoidal rule[11] to obtain a new set of nao values. The new set of nao
values can now be used again to evaluate the integrals and the process will be repeated until the
desired convergence is achieved. Next the loading is increased to A8 + A.B and the final values
of na, for the previous loading A8 can now be used as starting values for this iteration and the
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Fig. 4. Midspan displacement vs loading parameter (for hinged end beamand A = 5).
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Fig. 5. Midspan displacement vs loading parameter (for hinged end beamand A = 1).

process can be continued. It may be noted that computations can be reduced considerably by
symmetry considerations.

For the case where the axial constraint effect is included in the analysis, additional
computations are required. First, derivatives of na, have to be determined at the end points of m
intervals. This is done by representing na, by Newton’s backward interpolation formula and then
differentiating the formula[11]. For numerical computations differences up to the 3rd order are
considered. The value of p can now be obtained from equation (10) by evaluating the integral by
the trapizoidal rule. Integrals in equation (19) can now be evaluated to obtain new set of nao
values and the process can be repeated. Although in the present computational scheme numerical
differentiation is used to calculate dn/d¢, it is possible to avoid it by differentiating equation (19)
to yield,

dn® _ (" K

w3 = | G dv 22)

since K is continuously differentiable. The dn/d¢ value from above equation can be utilized to
calculate p with appropriate modifications in the iteration procedure.

In the present paper iterations are continued until na, converges within 0-5 percent. It may be
mentioned that the success of the iteration depends on the choice of the initial set of values for
nao. In the scheme followed in this paper, the initial set of values are obtained from the final
values of prior loadings. It is observed that for the cases considered, an increment of AB = 5 can
be made without encountering difficulty in the iteration process. It is also observed that the
process of convergence can be improved manyfold if the values of nao used in the evaluation of
integrals are taken as the average of the last two iterated values instead of only the last value.
This has been done in this paper and it damps out the oscillations in numerical computations.

Fig. 3 shows the effect of the loading parameter 8 on the axial constraint force. When n’' =0,
i.e. a linear foundation, the results obtained from this analysis match with those of reference (6).
It is interesting to note that the difference in p vs 8 curve for the linear foundation model (n’ = 0)
and the nonlinear foundation model with n' = 1 is quite small. Figs. 4 and 5 show variations of
midspan displacement nao with 8 for two different values A. As before when n' -0, the results
match those of [6].

It may be seen from these figures that although the solution for na, which ignores the axial
constraint effect differs significantly for the linear (n’ = 0) and the nonlinear model (n’ = 1) for
high values of B, the difference is rather small when axial constraint effect is included. This is
understandable, because inclusion of the axial constraint force in the analysis yields significantly
lower displacement values as compared to those obtained from the analysis which excludes this
force. Since the displacement is smaller, the foundation effect will also be smaller. Therefore, for
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the purpose of design of axially constrained beams hinged at both ends, when foundation
nonlinearity is not very severe (say n' =<1), it may be assumed to be linear (n' =0) without
introducing significant errors.
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